资源类型

期刊论文 212

年份

2023 22

2022 13

2021 20

2020 13

2019 16

2018 4

2017 12

2016 10

2015 9

2014 12

2013 8

2012 14

2011 8

2010 5

2009 7

2008 10

2007 11

2006 3

2005 1

2003 1

展开 ︾

关键词

DX桩 9

承载力 9

容量 4

沉降 4

工程管理 2

抗拔 2

生态文明 2

5% 法 1

700 MW级水电机组 1

FRP筋 1

Fuzzy几何规划 1

IP语音 1

PM2.5 1

三峡工程 1

三点弯曲梁 1

中长期 1

产业发展布局 1

产草量 1

优化调控模型 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural,

Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1251-1270 doi: 10.1007/s11709-019-0554-2

摘要: Capacity of components subjected to earthquake actions is still a widely interesting research topic. Hence, developing precise tools for predicting drift capacities of reinforced concrete (RC) columns is of great interest. RC columns are not only frequently constructed, but also their composite behavior makes the capacity prediction a task faced with many uncertainties. In the current article, novel empirical approaches are presented for predicting flexural, shear and axial failure modes in RC columns. To this aim, an extensive experimental database was created by collecting outcomes of previously conducted experimental tests since 1964, which are available in the literature. It serves as the basis for deriving the equations for predicting the drift capacity of RC columns by different regression analyses (both linear with different orders and nonlinear). Furthermore, fragility curves are determined for comparing the obtained results with the experimental results and with previously proposed models, like the ones of ASCE/SEI 41-13. It is demonstrated that the proposed equations predict drift capacities, which are in better agreement with experimental results than those computed by previously published models. In addition, the reliability of the proposed equations is higher from a probabilistic point of view.

关键词: flexural-shear-axial failure     drift capacity     reinforced concrete columns     statistical analysis     fragility curves    

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 888-906 doi: 10.1007/s11709-020-0637-0

摘要: In this study, a total of 177 flexural experimental tests of corroded reinforced concrete (CRC) beams were collected from the published literature. The database of flexural capacity of CRC beam was established by using unified and standardized experimental data. Through this database, the effects of various parameters on the flexural capacity of CRC beams were discussed, including beam width, the effective height of beam section, ratio of strength between longitudinal reinforcement and concrete, concrete compressive strength, and longitudinal reinforcement corrosion ratio. The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams, while other parameters have much less effect. In addition, six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database. It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams, there is one model overestimating the flexural capacity. Finally, a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.

关键词: CRC beams     flexural capacity     steel corrosion     database     empirical models    

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 306-325 doi: 10.1007/s11709-022-0890-5

摘要: This paper numerically studied the effect of uncertainty and random distribution of concrete strength in beams failing in shear and flexure using lattice modeling, which is suitable for statistical analysis. The independent variables of this study included the level of strength reduction and the number of members with reduced strength. Three levels of material deficiency (i.e., 10%, 20%, 30%) were randomly introduced to 5%, 10%, 15%, and 20% of members. To provide a database and reliable results, 1000 analyses were carried out (a total of 24000 analyses) using the MATLAB software for each combination. Comparative studies were conducted for both shear- and flexure-deficit beams under four-point loading and results were compared using finite element software where relevant. Capability of lattice modeling was highlighted as an efficient tool to account for uncertainty in statistical studies. Results showed that the number of deficient members had a more significant effect on beam capacity compared to the level of strength deficiency. The scatter of random load-capacities was higher in flexure (range: 0.680–0.990) than that of shear (range: 0.795–0.996). Finally, nonlinear regression relationships were established with coefficient of correlation values (R2) above 0.90, which captured the overall load–deflection response and level of load reduction.

关键词: lattice modeling     shear failure     flexural failure     uncertainty     deficiency     numerical simulation    

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 352-360 doi: 10.1007/s11709-017-0453-3

摘要:

Concrete members historically have used either pre-stressed steel or steel bars. In recent years there has been an increased interest in the use of fiber reinforced polymer (FRP) materials. However, the flexure behavior of a hybrid system reinforced by the combination of pre-stressed steel and glass fiber reinforced (GFRP) is still relatively unknown. The purpose of this work is to study this. Two slabs of 100 and 150-millimeter thickness, with a span of 2.1 m reinforced with both pre-stressing steel and GFRP were constructed and tested to failure using ACI 318-11 and ACI 440.1R-15. The concrete had strength of 31 MPa and the slabs were respectively reinforced with 5#4 bars and 3#5 bars. Each slab had 37.41 mm2 prestressing wire with a failure stress of 1722.5 MPa. The experimental flexural strength and deflection of slabs were compared with their respective sizes theoretical slabs. The theoretical slabs were either reinforced with pre-stressed steel or GFRP rebars, or a hybrid system. It was found that the hybrid system produces better results.

关键词: Partial pre-stressing     composite structures     GFRP bars    

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 378-389 doi: 10.1007/s11709-021-0706-z

摘要: In this study, we conducted experimental tests on two specimens of reinforced concrete beams using a three-point bending test to optimize the flexure and stiffness designs. The first specimen is a reinforced concrete beam with an ordinary reinforcement, and the second specimen has an invented reinforcement system that consists of an ordinary reinforcement in addition to three additional bracings using steel bars and steel plates. The results of the flexure test were collected and analyzed, and the flexural strength, the rate of damage during bending, and the stiffness were determined. Finite element modeling was applied for both specimens using the LS-DYNA program, and the simulation results of the flexure test for the same outputs were determined. The results of the experimental tests showed that the flexural strength of the invented reinforcement system was significantly enhanced by 15.5% compared to the ordinary system. Moreover, the flexural cracks decreased to a significant extent, manifesting extremely small and narrow cracks in the flexure spread along the bottom face of the concrete. In addition, the maximum deflection for the invented reinforced concrete beam decreased to 1/3 compared to that of an ordinary reinforced concrete beam. The results were verified through numerical simulations, which demonstrated excellent similarities between the flexural failure and the stiffness of the beam. The invented reinforcement system exhibited a high capability in boosting the flexure design and stiffness.

关键词: three-point flexure test     softening stage     flexural crack     flexural strain    

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1017-1028 doi: 10.1007/s11709-022-0871-8

摘要: The effect of size on the biaxial flexural strength (BFS) of Portland cement mortar was investigated by using the recently proposed triangular plate method (TPM). An experimental program was conceived to study the size effect by keeping a constant water-cement ratio of 0.485, cement-sand ratio of 1:2.75, and using unreinforced triangular mortar plates of five different thicknesses and seven different side lengths. The BFS of the produced specimens was tested, and variations of BFS depending on specimen thickness and side length were determined. The results indicated that increases in triangular plate specimen side length and specimen thickness led to a decrease in the BFS of Portland cement mortar. The effect of specimen length increase on BFS was more significant than on the effect of the specimen thickness. The variations in specimens’ thickness indicated a deterministic Type I size effect, while the variations in specimens’ length showed an energetic-statistical Type I size effect.

关键词: testing     apparatus & methods     plain concrete     tensile properties     biaxial flexural strength     triangular plate method    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 131-143 doi: 10.1007/s11709-021-0787-8

摘要: This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

关键词: RC beams     flexural     strengthening     CFRP     CNTs     finite element    

The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 191-201 doi: 10.1007/s11709-021-0792-y

摘要: A new insight into the interfacial transition zone (ITZ) in cement mortar specimens (CMSs) that is influenced by cement fineness is reported. The importance of cement fineness in ITZ characterizations such as morphology and thickness is elucidated by backscattered electron images and by consequences to the compressive (Fc) and flexural strength (Ff), and porosity at various water/cement ratios. The findings indicate that by increasing the cement fineness the calcium silicate hydrate formation in the ITZ is favored and that this can refine the pore structures and create a denser and more homogeneous microstructure. By increasing cement fineness by about 25% of, the ITZ thickness of CMSs was reduced by about 30% and Fc was increased by 7%–52% and Ff by 19%–40%. These findings illustrate that the influence of ITZ features on the mechanical strength of CMSs is mostly related to the cement fineness and ITZ microstructure.

关键词: cement fineness     interfacial transition zone     compressive and flexural strength    

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1271-1287 doi: 10.1007/s11709-019-0556-0

摘要: To enhance the durability of a reinforced concrete structure, engineered cementitious composite (ECC), which exhibits high tensile ductility and good crack control ability, is considered a promising alternative to conventional concrete. However, broad application of ECC is hindered by its high cost. This paper presents a new means to address this issue by introducing a composite beam with a U-shaped ECC permanent formwork and infill concrete. The flexural performance of the ECC/RC composite beam has been investigated experimentally with eight specimens. According to the test results, the failure of a composite beam with a U-shaped ECC formwork is initiated by the crushing of compressive concrete rather than debonding, even if the surface between the ECC and the concrete is smooth as-finished. Under the same reinforcement configurations, ECC/RC composite beams exhibit increases in flexural performance in terms of ductility, load-carrying capacity, and damage tolerance compared with the counterpart ordinary RC beam. Furthermore, a theoretical model based on the strip method is proposed to predict the moment-curvature responses of ECC/RC composite beams, and a simplified method based on the equivalent rectangular stress distribution approach has also evolved. The theoretical results are found to be in good agreement with the test data.

关键词: engineered cementitious composite (ECC)     durability     ECC/RC composite beam     permanent formwork     flexural performance     theoretical method    

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 341-355 doi: 10.1007/s11709-013-0221-y

摘要: The most critical drawback in currently used steel reinforcement in reinforced concrete (RC) structures is susceptibility to accumulation of plastic deformation under excessive loads. Many concrete structures due to damaged (yielded) steel reinforcement have undergone costly repairs and replacements. This research presents a new type of shape memory alloy (SMA)-based composite reinforcement with ability to withstand high elongation while exhibiting pseudo-elastic behavior. In this study, small diameter SMA wires are embedded in thermoset resin matrix with or without additional glass fibers to develop composite reinforcement. Manufacturing technique of new proposed composite is validated using microscopy images. The proposed SMA-FRP composite square rebars are first fabricated and then embedded in small scale concrete T-beam. 3-point bending test is conducted on manufactured RC beam using a cyclic displacement controlled regime until failure. It is found that the SMA-FRP composite reinforcement is able to enhance the performance of concrete member by providing re-centering and crack closing capability.

关键词: re-centering     shape memory alloys     concrete     composite     fiber reinforced polymer     scanning electron microscopy    

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 163-175 doi: 10.1007/s11709-014-0272-8

摘要: This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load-deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexural-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural-torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

关键词: flexural-torsional buckling     aluminum alloy beams (AAB)     finite element method (FEM)     theoretical formula    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 649-668 doi: 10.1007/s11709-023-0919-4

摘要: Externally bonded (EB) and near-surface mounted (NSM) bonding are two widely adopted and researched strengthening methods for reinforced-concrete structures. EB composite substrates are easy to reach and repair using appropriate surface treatments, whereas NSM techniques can be easily applied to the soffit and concrete member sides. The EB bonded fiber-reinforced polymer (FRP) technique has a significant drawback: combustibility, which calls for external protective agents, and textile reinforced mortar (TRM), a class of EB composites that is non-combustible and provides a similar functionality to any EB FRP-strengthened substrate. This study employs a finite element analysis technique to investigate the failing failure of carbon textile reinforced mortar (CTRM)-strengthened reinforced concrete beams. The principal objective of this numerical study was to develop a finite element model and validate a set of experimental data in existing literature. A set of seven beams was modelled and calibrated to obtain concrete damage plasticity (CDP) parameters. The predicted results, which were in the form of load versus deflection, load versus rebar strain, tensile damage, and compressive damage patterns, were in good agreement with the experimental data. Moreover, a parametric study was conducted to verify the applicability of the numerical model and study various influencing factors such as the concrete strength, internal reinforcement, textile roving spacing, and externally-applied load span. The ultimate load and deflection of the predicted finite element results had a coefficient of variation (COV) of 6.02% and 5.7%, respectively. A strain-based numerical comparison with known methods was then conducted to investigate the debonding mechanism. The developed finite element model can be applied and tailored further to explore similar TRM-strengthened beams undergoing debonding, and the preventive measures can be sought to avoid premature debonding.

关键词: fiber reinforced polymer     textile reinforced mortar     finite element analysis     concrete damage plasticity     calibration and validation     parametric study    

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 227-243 doi: 10.1007/s11709-020-0687-3

摘要: To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.

关键词: high-strength steel reinforcement     high-strength concrete     flexural behavior     crack width    

标题 作者 时间 类型 操作

Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural,

Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH

期刊论文

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

期刊论文

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

期刊论文

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

期刊论文

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

期刊论文

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

期刊论文

The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of

期刊论文

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

期刊论文

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

期刊论文

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete

期刊论文

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

期刊论文

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

期刊论文